## Polyfunctional Peroxides from *tert*-Butyl Hydroperoxide-loaded Autoxidations of Polyunsaturated Substrates and an Assessment of the Rate Constants for Allylic Peroxyl Radical Rearrangements and Peroxyl Radical Ring Closures

## John L. Courtneidge

Malaysian Rubber Producers' Research Association, Tun Abdul Razak Laboratory, Brickendonbury, Hertford SG138NL, UK

Using the recently-disclosed *tert*-butyl hydroperoxide-loaded autoxidation method, *cis*-2,6-dimethyl-2,6-octadiene and *trans*-5-methyl-1,5,9-decatriene have been converted into hydroperoxy-1,2-dioxanes and hydroperoxy-1,2-dioxolanes: the product ratios from these, and other, reactions permit an assessment of the relative magnitudes of allylic peroxyl radical rearrangements and of peroxyl radical cyclizations.

We recently disclosed<sup>1</sup> conditions under which classical, initiated autoxidation reactions could be modified to provide excellent yields of primary autoxidation products: by carrying out these reactions in media containing high concentrations of *tert*-butyl hydroperoxide, an extra equilibration step relieved substrate-derived peroxyl radicals from the diversion of chain carrying and termination.



Scheme 1 Reagents and conditions: i: 0.02 mol dm<sup>-3</sup> 1, 1.0 mol dm<sup>-3</sup> Bu'O<sub>2</sub>H, 1 mmol dm<sup>-3</sup> initiator (2,2'-azoisobutyrionitrile, AIBN or bis-4-*tert*-butylcyclohexylperoxydicarbonate), in 2,2,4-trimethylpentane, O<sub>2</sub>, 60 °C, 6–6.5 h

Application of this method to polyunsaturated substrates suggested the prospect of even richer peroxyl radical chemistry and experiment proves this to be the case. Accordingly, reaction of *cis*-2,6-dimethyl-2,6-octadiene 1 under these conditions provides good yields of both hydroperoxy-1,2-dioxanes 4,5 and -dioxolanes 6,7, which are formed by sequences which are depicted in Scheme 1.

Disfavoured abstraction at C-8 competes, because of statistical compensation, with favoured abstraction<sup>1</sup> at C-4. Allylic radicals **2** and **3** then develop *via* non-stereospecific 6-*exo* and stereospecific 5-*exo* closures to give an inseparable, almost equimolar mixture of 1,2-dioxane isomers **4** and **5** and separable, less polar, epimeric 1,2-dioxalanes **6** and **7**.

The corresponding reaction (Scheme 2) of *trans*-5-methyl-1,5,9-decatriene,  $8,^2$  gave, after HPLC analysis and separation of the principal products (*ca.* 40% conversion with *ca.* 70% of the absorbed oxygen being accounted for by the products described) three fractions containing hydroperoxy-cyclic peroxides, the smallest of which (8%) contained traces of the hydroperoxydioxanes 9 and 10. The others contained hydroperoxy-dioxolanes derived from abstraction at the preferred and the less preferred sites: 11 plus 12 (73%) and 13 (19%).†

Consideration of the reactions in Scheme 2, indicates the relative magnitudes of the competing processes: allylic radical 14 preferentially combines with oxygen to give 15 which closes to eventually give 11 and 12, while 16 develops *via* 17 (probably equilibrating with 18) to give essentially only 13.

<sup>&</sup>lt;sup>†</sup> HPLC separation of the triphenylphosphine-treated material gave samples of isomers **11**, **12** and **13** as hydroxydioxolanes (ratio 67:27:10). All materials described herein were fully characterised by <sup>1</sup>H and <sup>13</sup>C NMR, with appropriate chemical conversions, and, in the case of the hydroperoxydioxanes **9**, **10**, by independent synthesis using tributyltin hydride-mediated oxygenation of geranyl bromide (using only one equivalent of hydride): a rather inefficient extension of the method of Nakamura *et al.*<sup>3</sup> and the comparable reductive oxygenation of allylic organomercury salts by Corey and Walker.<sup>4</sup>



Scheme 2 Reagents and conditions: i, as for Scheme 1

The 5-exo peroxyl ring closure, like the carbon-centred analogues,<sup>5</sup> appears to be faster than competing 6-exo closures<sup>6</sup> (although we note that, like the carbon-centred cases, substituent effects might modify this ordering), and the closure of 17 to give 13 supports this view. Furthermore, the plausible equilibration between 17 and 18 indicates that thermoneutral allylic peroxyl radical rearrangements (of which this is probably an example) have rate constants comparable with 5-exo closures and significantly faster than the competing 6-exo closures.

Conversely, however, energetically asymmetric equilibrations (of which that between *secondary*, allylic peroxyl **15** and *tertiary*, allylic peroxyl **19** is probably an example) seem not to compete with the 5-exo closure, as the following appears to demonstrate.

The *tertiary* allylic hydroperoxide  $20,\ddagger$  under oxygen, underwent AIBN-initiated conversion to two groups of hydroperoxy cyclic peroxides that were isolated as hydroperoxides by HPLC (Scheme 3). At *ca*. 50% conversion the more polar group (41%) was composed of an almost equimolar mixture of hydroperoxydioxanes 9 and 10 (identical, by <sup>1</sup>H NMR with those detected in the minor fraction referred to above), while the less polar group (59%) was comprised principally of three hydroperoxydioxolanes, 11, 12 and 21 (ratio *ca*. 78:20:2).

The formation of 9 and 10 in this latter experiment, and the preferential formation of 11 and 12 in both triene reactions, suggest a number of conclusions. Firstly, capture of oxygen by allylic radical 14 at the *secondary* terminus is preferred (a precedent for which might be found in ref. 3); secondly, equilibration of the *tertiary*, allylic peroxyl radical 19 to the preferred *trans*, secondary-allylic peroxyl radical 15 competes at a rate comparable to the 6-exo ring closure of 19; thirdly, the



reverse rearrangement (15 to 19) is slower than the 5-exo ring closure, and finally, rearrangement of 19 to the apparently equally stable cis, allylic secondary peroxyl 22 is somewhat slower than either rearrangement of 19 to 15 or of cyclisation of 19 onwards to 9 and 10.

Practically, we find that allylic peroxyl radical rearrangements seem faster in cyclic, rather than in acyclic, systems, but attempts to quantify such rates have been frustrated.<sup>8</sup> However, using the 'radical clock' paradigm, we can use the present results, along with Porter's estimate<sup>9</sup> for a 5-*exo* peroxyl radical closure of  $\sim 8 \times 10^2 \, \text{s}^{-1}$  at 30 °C, to suggest that both 6-*exo* peroxyl radical closures and allylic peroxyl rearrangements have rate constants that are about two orders of magnitude lower than the 5-*exo* closure rate. It is interesting to note that the relative 5-*exo* and 6-*exo* peroxyl radical closure rates appear to be separated by a ratio similar to that for the carbon-centred analogues:<sup>5</sup> no doubt similar stereoelectronic control is at work in both cases.

We are grateful to Dr A. V. Chapman of these Laboratories for the gift of the *cis*-diene and members of the Materials Characterization Group, MRPRA for spectroscopic and other

<sup>&</sup>lt;sup>‡</sup> Reaction of triene **8** with singlet oxygen gave a readily separable mixture of **20** and an almost equimolar quantity of the *exo*-methylene isomer (*cf.* reactions of other *trans*-trisubstituted alkenes<sup>7</sup>). Similar to *tert*-butylperoxyl radicals (Scheme 2) and other electrophiles,<sup>2</sup> the reaction occurred selectively at the central double bond.

analytical services and in particular to Dr A. D. Edwards for HPLC separations and analyses. Finally to the Director and Board of MRPRA for permission to publish this work.

Received, 11th May 1992; Com. 2/02431D

## References

- 1 J. L. Courtneidge and M. Bush, J. Chem. Soc., Chem. Commun., 1989, 1227; J. L. Courtneidge and M. Bush, J. Chem. Soc., Perkin Trans. 1, 1992, 1531.
- 2 M. Julia and J. D. Fourneron, *Tetrahedron Lett.*, 1973, 3429; *Bull. Soc. Chim. Fr.*, 1975, 770.

- 3 E. Nakamura, T. Inubshi, S. Aoki and D. Machii, J. Am. Chem. Soc., 1991, **113**, 8980.
- 4 E. J. Corey and J. C. Walker, *J. Am. Chem. Soc.*, 1987, **109**, 8108. 5 A. L. J. Beckwith, T. Lawrence and A. K. Serelis, *J. Chem. Soc.*,
- A. L. J. Beckwith, T. Lawrence and A. K. Serelis, *J. Chem. Soc.*, *Chem. Commun.*, 1980, 484; A. L. J. Beckwith, *Tetrahedron*, 1981, **37**, 3073; A. L. J. Beckwith and C. H. Schiesser, *Tetrahedron*, 1985, **41**, 3925.
- 6 A. J. Bloodworth, R. J. Curtis and N. Mistry, J. Chem. Soc., Chem. Commun., 1989, 954.
- 7 A. R. Arnold, A. J. Boon, J. L. Courtneidge and P. S. Farley, J. Natural Rubber Res., submitted for publication.
- 8 H.-S. Dang, A. G. Davies, I. G. E. Davison and C. H. Schiesser, J. Org. Chem., 1990, 55, 1432.
- 9 N. A. Porter, L. S. Lehman, B. A. Weber and K. J. Smith. J. Am. Chem. Soc., 1981, 103, 6447; N. A. Porter, Acc. Chem. Res., 1986, 19, 262.